150 research outputs found

    Microstencils to generate defined, multi-species patterns of bacteria

    Get PDF
    Citation: Timm, C. M., Hansen, R. R., Doktycz, M. J., Retterer, S. T., & Pelletier, D. A. (2015). Microstencils to generate defined, multi-species patterns of bacteria. Biomicrofluidics, 9(6). doi:10.1063/1.4935938Microbial communities are complex heterogeneous systems that are influenced by physical and chemical interactions with their environment, host, and community members. Techniques that facilitate the quantitative evaluation of how microscale organization influences the morphogenesis of multispecies communities could provide valuable insights into the dynamic behavior and organization of natural communities, the design of synthetic environments for multispecies culture, and the engineering of artificial consortia. In this work, we demonstrate a method for patterning microbes into simple arrangements that allow the quantitative measurement of growth dynamics as a function of their proximity to one another. The method combines parylene-based liftoff techniques with microfluidic delivery to simultaneously pattern multiple bacterial species with high viability using low-cost, customizable methods. Quantitative measurements of bacterial growth for two competing isolates demonstrate that spatial coordination can play a critical role in multispecies growth and structure. © 2015 AIP Publishing LLC

    Controlling condensation and frost growth with chemical micropatterns

    Get PDF
    Citation: Boreyko, J. B., Hansen, R. R., Murphy, K. R., Nath, S., Retterer, S. T., & Collier, C. P. (2016). Controlling condensation and frost growth with chemical micropatterns. Scientific Reports, 6, 15. doi:10.1038/srep19131In-plane frost growth on chilled hydrophobic surfaces is an inter-droplet phenomenon, where frozen droplets harvest water from neighboring supercooled liquid droplets to grow ice bridges that propagate across the surface in a chain reaction. To date, no surface has been able to passively prevent the in-plane growth of ice bridges across the population of supercooled condensate. Here, we demonstrate that when the separation between adjacent nucleation sites for supercooled condensate is properly controlled with chemical micropatterns prior to freezing, inter-droplet ice bridging can be slowed and even halted entirely. Since the edge-to-edge separation between adjacent supercooled droplets decreases with growth time, deliberately triggering an early freezing event to minimize the size of nascent condensation was also necessary. These findings reveal that inter-droplet frost growth can be passively suppressed by designing surfaces to spatially control nucleation sites and by temporally controlling the onset of freezing events

    Development of transparent microwell arrays for optical monitoring and dissection of microbial communities

    Get PDF
    Citation: Halsted, M., Wilmoth, J. L., Briggs, P. A., Hansen, R. R., Briggs, D. P., Timm, A. C., & Retterer, S. T. (2016). Development of transparent microwell arrays for optical monitoring and dissection of microbial communities. Journal of Vacuum Science & Technology B, 34(6), 5. doi:10.1116/1.4962739Microbial communities are incredibly complex systems that dramatically and ubiquitously influence our lives. They help to shape our climate and environment, impact agriculture, drive business, and have a tremendous bearing on healthcare and physical security. Spatial confinement, as well as local variations in physical and chemical properties, affects development and interactions within microbial communities that occupy critical niches in the environment. Recent work has demonstrated the use of silicon based microwell arrays, combined with parylene lift-off techniques, to perform both deterministic and stochastic assembly of microbial communities en masse, enabling the high-throughput screening of microbial communities for their response to growth in confined environments under different conditions. The implementation of a transparent microwell array platform can expand and improve the imaging modalities that can be used to characterize these assembled communities. Here, the fabrication and characterization of a next generation transparent microwell array is described. The transparent arrays, comprised of SU-8 patterned on a glass coverslip, retain the ability to use parylene lift-off by integrating a low temperature atomic layer deposition of silicon dioxide into the fabrication process. This silicon dioxide layer prevents adhesion of the parylene material to the patterned SU-8, facilitating dry lift-off, and maintaining the ability to easily assemble microbial communities within the microwells. These transparent microwell arrays can screen numerous community compositions using continuous, high resolution, imaging. The utility of the design was successfully demonstrated through the stochastic seeding and imaging of green fluorescent protein expressing Escherichia coli using both fluorescence and brightfield microscopies. (C) 2016 American Vacuum Society

    Stochastic Assembly of Bacteria in Microwell Arrays Reveals the Importance of Confinement in Community Development

    Get PDF
    Citation: Hansen, R. H., Timm, A. C., Timm, C. M., Bible, A. N., Morrell-Falvey, J. L., Pelletier, D. A., . . . Retterer, S. T. (2016). Stochastic Assembly of Bacteria in Microwell Arrays Reveals the Importance of Confinement in Community Development. Plos One, 11(5), 18. doi:10.1371/journal.pone.0155080The structure and function of microbial communities is deeply influenced by the physical and chemical architecture of the local microenvironment and the abundance of its community members. The complexity of this natural parameter space has made characterization of the key drivers of community development difficult. In order to facilitate these characterizations, we have developed a microwell platform designed to screen microbial growth and interactions across a wide variety of physical and initial conditions. Assembly of microbial communities into microwells was achieved using a novel biofabrication method that exploits well feature sizes for control of innoculum levels. Wells with incrementally smaller size features created populations with increasingly larger variations in inoculum levels. This allowed for reproducible growth measurement in large (20 mu m diameter) wells, and screening for favorable growth conditions in small (5, 10 mu m diameter) wells. We demonstrate the utility of this approach for screening and discovery using 5 mu m wells to assemble P. aeruginosa colonies across a broad distribution of innoculum levels, and identify those conditions that promote the highest probability of survivial and growth under spatial confinement. Multi-member community assembly was also characterized to demonstrate the broad potential of this platform for studying the role of member abundance on microbial competition, mutualism and community succession

    Machupo Virus Glycoprotein Determinants for Human Transferrin Receptor 1 Binding and Cell Entry

    Get PDF
    Machupo virus (MACV) is a highly pathogenic New World arenavirus that causes hemorrhagic fever in humans. MACV, as well as other pathogenic New World arenaviruses, enter cells after their GP1 attachment glycoprotein binds to their cellular receptor, transferrin receptor 1 (TfR1). TfR1 residues essential for this interaction have been described, and a co-crystal of MACV GP1 bound to TfR1 suggests GP1 residues important for this association. We created MACV GP1 variants and tested their effect on TfR1 binding and virus entry to evaluate the functional significance of some of these and additional residues in human and simian cells. We found residues R111, D123, Y122, and F226 to be essential, D155, and P160 important, and D114, S116, D140, and K169 expendable for the GP1-TfR1 interaction and MACV entry. Several MACV GP1 residues that are critical for the interaction with TfR1 are conserved among other New World arenaviruses, indicating a common basis of receptor interaction. Our findings also open avenues for the rational development of viral entry inhibitors

    Histone H3.3 beyond cancer: Germline mutations in Histone 3 Family 3A and 3B cause a previously unidentified neurodegenerative disorder in 46 patients

    Get PDF

    Mutations disrupting neuritogenesis genes confer risk for cerebral palsy

    Get PDF
    In addition to commonly associated environmental factors, genomic factors may cause cerebral palsy. We performed whole-exome sequencing of 250 parent-offspring trios, and observed enrichment of damaging de novo mutations in cerebral palsy cases. Eight genes had multiple damaging de novo mutations; of these, two (TUBA1A and CTNNB1) met genome-wide significance. We identified two novel monogenic etiologies, FBXO31 and RHOB, and showed that the RHOB mutation enhances active-state Rho effector binding while the FBXO31 mutation diminishes cyclin D levels. Candidate cerebral palsy risk genes overlapped with neurodevelopmental disorder genes. Network analyses identified enrichment of Rho GTPase, extracellular matrix, focal adhesion and cytoskeleton pathways. Cerebral palsy risk genes in enriched pathways were shown to regulate neuromotor function in a Drosophila reverse genetics screen. We estimate that 14% of cases could be attributed to an excess of damaging de novo or recessive variants. These findings provide evidence for genetically mediated dysregulation of early neuronal connectivity in cerebral palsy
    • …
    corecore